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Abstract. We consider a quantum impurity model in which a bosonic impurity level is coupled to a non-
interacting bosonic bath, with the bosons at the impurity site subject to a local Coulomb repulsion U .
Numerical renormalization group calculations for this bosonic single-impurity Anderson model reveal a
zero-temperature phase diagram where Mott phases with reduced charge fluctuations are separated from a
Bose-Einstein condensed phase by lines of quantum critical points. We discuss possible realizations of this
model, such as atomic quantum dots in optical lattices. Furthermore, the bosonic single-impurity Anderson
model appears as an effective impurity model in a dynamical mean-field theory of the Bose-Hubbard model.

PACS. 05.10.Cc Renormalization group methods – 05.30.Jp Boson systems – 03.75.Nt Other Bose-Einstein
condensation phenomena

1 Introduction

The focus of this work is the physics of a bosonic impurity
state coupled to a non-interacting bosonic environment
modeled by the Hamiltonian

H = ε0b
†b +

1
2
Ub†b

(
b†b − 1

)

+
∑

k

εkb†kbk +
∑

k

Vk

(
b†kb + b†bk

)
. (1)

The energy of the impurity level (with operators b(†)) is
given by ε0; the parameter U is the local Coulomb repul-
sion acting on the bosons at the impurity site. The impu-
rity couples to a bosonic bath via the hybridization Vk,
with the bath degrees of freedom given by the operators
b
(†)
k with energy εk.

We term the system defined by equation (1) the
‘bosonic single-impurity Anderson model’ (bosonic siAm),
in analogy to the standard (fermionic) siAm [1] which has
a very similar structure except that all fermionic opera-
tors are replaced by bosonic ones. Furthermore, we do not
consider internal degrees of freedom of the bosons, such as
the spin (an essential ingredient in the fermionic siAm).

There are various ways to motivate the study of
the model equation (1). From a purely theoretical point
of view it is interesting to compare the physics of the
fermionic and bosonic versions of the siAm. Of course,
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there are striking differences between these two mod-
els: there is no direct bosonic analog of local moment
formation and screening of these local moments at low
temperatures, characteristics of the fermionic Kondo ef-
fect [2]. On the other hand, the bosonic model allows for
a Bose-Einstein condensation (BEC), at least in a certain
parameter space (see Fig. 1 below), a phenomenon which
is clearly absent in the fermionic model.

There are certain similarities between the fermionic
and the bosonic model concerning the role of the local
Coulomb repulsion U : increasing the value of U can induce
a quantum phase transition from a phase with screened
spin to a local moment phase in the fermionic case [3],
while it can induce a quantum phase transition from a
BEC phase to a ‘Mott phase’ in the bosonic case, as shown
below.

Another motivation for studying the bosonic siAm
comes from a treatment of the Bose-Hubbard model
within dynamical mean-field theory (DMFT) [4]. Al-
though such an investigation has not been pursued so far,
it is clear that the effective impurity model onto which
the Bose-Hubbard model is mapped will have a similar
form as equation (1) (see also Ref. [5]). An obvious ap-
plication of such a DMFT treatment would then address
the Mott transition in the Bose-Hubbard model [6] which
must have its counterpart on the level of the effective im-
purity model — and the ‘Mott transition’ on the impurity
level is precisely what we are looking at here.

Finally, a physical system described by the bosonic
siAm could be directly realized in optical lattices (‘atomic
quantum dots’, see Refs. [7,8]) or generally in optical
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traps. In the spirit of the ‘Hubbard tool-box’ [8,9], the
laser fields in these systems could be tuned in such a
way that a single impurity — a deep hole — is formed
within an otherwise unperturbed system. Present theo-
retical studies of atomic quantum dots focus, however, on
a coupling between impurity and excitations of the super-
fluid environment [7], for which a description in terms of
the spin-boson model is more appropriate.

For the calculations presented in this paper we use
the numerical renormalization group (NRG) originally
developed by Wilson for the Kondo problem [10]. This
method has been shown to give very accurate results for
a broad range of impurity models, including the fermionic
siAm [1,11] but also quantum impurities with coupling to
a bosonic bath [12,13]. In Section 2 we briefly describe the
bosonic extension of the NRG (bosonic NRG) which we
employ here to study the model equation (1). Section 3
contains results for the ground state phase diagram of the
bosonic siAm. We find that, similar to the Bose-Hubbard
model, the phase diagram of the impurity model is char-
acterized by a sequence of Mott phases, separated by lines
of quantum critical points from a BEC phase. The paper
is summarized in Section 4.

2 Model and method

Let us first discuss some general properties and trivial
limits of the model equation (1). Similar to other quantum
impurity models, the influence of the bath on the impurity
is completely specified by the bath spectral function

∆(ω) = π
∑

k

V 2
k δ(ω − εk). (2)

Here we assume that ∆(ω) can be parametrized by a pow-
erlaw for frequencies up to a cutoff ωc (we set ωc = 1 in
the calculations)

∆(ω) = 2π α ω1−s
c ωs , 0 < ω < ωc. (3)

The parameter α is the dimensionless coupling constant
for the impurity-bath interaction. This form of ∆(ω) is
certainly not the most general one and specific applica-
tions (within a bosonic DMFT or for an impurity level
in an optical lattice) will lead to additional structures in
∆(ω).

The NRG calculations presented here are performed
for a grand-canonical ensemble with the chemical poten-
tial of the bath set to µ = 0. Note that in the actual
numerical calculation there is always a small gap between
the chemical potential and the energy of the lowest bath
state due to the discretization of the bath. Therefore a
Bose-Einstein condensation of the whole system (impu-
rity plus bath) can only be induced by the coupling to the
impurity. This can already be seen in the non-interacting
case, U = 0: here a direct diagonalization of the bosonic
siAm shows that with increasing α, a localized state with
negative energy separates out of the continuum at a critical
value α = αc. Right at the critical value, the BEC occurs

via populating this localized state (the non-interacting
model for α > αc is ill-defined as the ground-state has
infinite negative energy, in contrast to the case of finite
and positive U).

We want to stress here that, in general, a macroscopic
occupation of such a localized state — which occupies a
small area in real space around the impurity — cannot
be realized for any finite repulsive interaction between the
bosons in the bath [14]. The BEC phase of the bosonic
siAm should therefore be regarded as an artefact of the
model equation (1), for both U = 0 and finite U at the
impurity site, although such a finite U prevents a macro-
scopic occupation of the impurity (see Fig. 4).

The other trivial limit of the bosonic siAm is the de-
coupled impurity, α = 0. The succession of quantum phase
transitions as shown in Figure 1 for α = 0 can be easily
understood from the dependence of the many-particle lev-
els on the parameters ε0 and U . The transition occurs for
ε0/U = −nimp when the energies of the states with nimp

and nimp + 1 bosons are degenerate.

The full phase diagram Figure 1 is calculated with the
bosonic NRG [13]. In this approach, the frequency range of
the bath spectral function [0, ωc] is divided into intervals
[ωcΛ

−(n+1), ωcΛ
−n], n = 0, 1, 2, . . ., with Λ the NRG dis-

cretization parameter (we use Λ = 2.0 for all the results
shown in this paper). The continuous spectral function
within these intervals is approximated by a single bosonic
state and the resulting discretized model is then mapped
onto a semi-infinite chain with the Hamiltonian

H = ε0b
†b +

1
2
Ub†b

(
b†b − 1

)
+ V

(
b†b̄0 + b̄†0b

)

+
∞∑

n=0

εnb̄†nb̄n +
∞∑

n=0

tn

(
b̄†nb̄n+1 + b̄†n+1b̄n

)
. (4)

Here the impurity couples to the first site of the chain via
the hybridization V =

√
2α/(1 + s). The bath degrees

of freedom are in the form of a tight-binding chain with
operators b̄

(†)
n , on-site energies εn, and hopping matrix el-

ements tn which both fall off exponentially: tn, εn ∝ Λ−n.

The chain model equation (4) is diagonalized itera-
tively starting with the impurity site and adding one site
of the chain in each iteration. As for the application to
the spin-boson model, only a finite number Nb of basis
states for the added site can be taken into account, and,
after diagonalizing the enlarged cluster, only the lowest-
lying Ns many-particle states are kept for the subsequent
iterations (here we use Nb = 10–20 and Ns = 100–200).
The main technical difference to the spin-boson model is
that we can use the total particle-number as a conserved
quantity in the Hamiltonian equation (1). Furthermore,
the renormalization group flow turns out to be consider-
ably more stable as in the calculations for the spin-boson
model so that we can easily perform up to N = 100 iter-
ations.
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Fig. 1. Zero-temperature phase diagram of the bosonic siAm
for bath exponent s = 0.6 and fixed impurity Coulomb interac-
tion U = 0.5. The different symbols denote the phase bound-
aries between the Mott phases and the BEC phase. The Mott
phases are labeled by their occupation n0 = nimp (α = 0). Only
the Mott phases with n0 ≤ 4 are shown. The NRG parameters
are Λ = 2.0, Nb = 10, and Ns = 100.

3 Results

Let us now discuss the T = 0 phase diagram of the
bosonic siAm, Figure 1, calculated for fixed U = 0.5
with the parameter space spanned by the dimension-
less coupling constant α and the impurity energy ε0. We
choose s = 0.6 as the exponent of the powerlaw in ∆(ω)
(the s-dependence of the phase diagram is discussed in
Fig. 5 below). The phase diagram is characterized by a
sequence of lobes which we label by the impurity occupa-
tion n0 = nimp(α = 0) where it takes integer values. We
use the terminology ‘Mott phases’ for these lobes, due to
the apparent similarity to the phase diagram of the Bose-
Hubbard model. The Mott phases are separated from the
BEC phase by lines of quantum critical points which ter-
minate (for s = 0.6) at a finite value of α, except for the
n0 = 0 phase where the boundary extends up to infinite α.
These transitions can be viewed as the impurity analogue
of the Mott transition in the lattice model, since it is the
local Coulomb repulsion which prevents the formation of
the BEC state.

The phase diagram Figure 1 is deduced from the flow
of the lowest-lying many-particle levels which allows quite
generally to identify fixed points and transitions between
these fixed points [11]. Figure 2 shows the flow for s = 0.4,
fixed α = 0.007 and U = 0.5, and two values of ε0 very
close to the quantum phase transition. The solid lines be-
long to the Mott phase with n0 = 2 and display a crossover
between two fixed points: from an unstable quantum crit-
ical point for iteration numbers N ∼ 20–40 to a stable
fixed point for N > 70. Analysis of the stable fixed point
shows that it can be described by a decoupled impurity
with occupation n0 = 2 and a free bosonic bath given
by the decoupled chain. (The actual impurity occupation
nimp, however, differs from the integer values, as discussed
below.) The structure of the quantum critical point, on the
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Fig. 2. Flow diagram of the lowest lying many-particle levels
EN versus iteration number N for parameters s = 0.4, α =
0.007, U = 0.5, and two values of ε0 very close to the quantum
phase transition between the Mott phase with n0 = 2 and the
BEC phase. Both the quantum critical point and the Mott
phase appear as fixed points in this scheme whereas in the
BEC phase, a gap ∆g opens between the ground state and the
first excited state, see the inset where EN (instead of ENΛN )
is plotted versus N .

other hand, is presently not clear but might be accessible
to perturbative methods as discussed in [15].

The dashed lines belong to the BEC phase where, ap-
parently, something dramatic is happening at N ≈ 55.
The divergence of the energies for all excited states seen
in this plot is due to the formation of a localized state,
split off from the continuum by an energy gap ∆g. This
energy gap, which can be viewed as the order parameter
of the BEC phase, takes a finite value which is not renor-
malized to zero as Λ−N as the levels of the other fixed
points, therefore the divergence of ∆g ·ΛN . In the inset of
Figure 2 we plot EN (instead of ENΛN ) so that the de-
velopment of the gap ∆g ≈ 4×10−18 appears as a plateau
of the first excited state. The extremely small value of the
gap is due to the tuning of the parameters very close to
the transition; it turns out that ∆g vanishes at the tran-
sition with a powerlaw, with the same exponent as the
crossover scale T ∗, as discussed below. Further analysis of
the data shows that the ground state in the BEC phase
has an occupation number given by the maximum boson
number used in the iterative diagonalization.

The fact that the unstable fixed point separating
the Mott phase from the BEC phase is indeed a quan-
tum critical point can be deduced from its non-trivial
level structure, as mentioned above, and the behav-
ior of the crossover scale T ∗. Numerically we find that
upon variation of ε0 close to its critical value ε0,c, the
crossover scale vanishes with a powerlaw at the transi-
tion, T ∗ ∝ |ε0 − ε0,c|ν . (Upon variation of α, the relation
is T ∗ ∝ |α − αc|ν .) This can be seen in the inset of Fig-
ure 3, where we also show that the same critical exponent
obtains upon variation of α below and above the critical
value. For s = 0.4, we find an exponent ν ≈ 2.50 ± 0.06,
valid for all lines of quantum critical points in the phase
diagram for this value of the bath exponent.
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Fig. 3. Main panel: dependence of the critical exponent ν on
the bath exponent s, calculated upon variation of ε0 (circles)
and α (squares). Data are in very good agreement with the
relation ν = 1/s, plotted as dashed line. The inset shows the
dependence of the crossover scale T ∗ on |α−αc| for fixed ε0 =
−0.25, U = 0.5, s = 0.4, and for α-values on both sides of the
transition (squares: α < αc, circles: α > αc).

The dependence of the critical exponent ν on s is
shown in the main panel of Figure 3. Our data suggest
that the relation ν = 1/s is valid for the whole range,
0 < s < 1. This relation also holds for the critical exponent
corresponding to the vanishing of the order parameter, ∆g,
when approaching the transition from the BEC side.

Let us now focus on the impurity occupation nimp for
temperature T = 0. Figure 4 shows the dependence of
nimp on ε0 for s = 0.4, U = 0.5, and various values of α.
The symbols indicate that the system is in the Mott phase
whereas the dashed lines are for the BEC phase. Taken
together, both sets of lines form a continuous curve.

The terminology we use here suggests an integer oc-
cupation throughout the Mott phase, as for the Bose-
Hubbard model, but for the bosonic siAm nimp deviates
from the integer values as soon as the coupling to the
bath is finite, see Figure 4. This is to be expected since
for a gapless bath spectral function ∆(ω), the charge fluc-
tuations on the impurity site cannot be completely sup-
pressed. Indeed we observe that for increasing the value
of the bath exponent s, the nimp(ε0)-curve gets closer to
the step function. At this point one can speculate about
the possible development of ∆(ω) in a DMFT treatment
of the Mott phase. The self-consistency might generate a
bath spectral function with a gap and the impurity occu-
pation might then turn into the step function expected for
the lattice model.

The precise shape of the boundaries in the phase dia-
gram Figure 1 depends on the form of ∆(ω) for all frequen-
cies. Here we stick to the powerlaw form equation (3) and
present the dependence of the phase diagram on the bath
exponent s in Figure 5. We observe that upon increasing
the value of s, the areas occupied by the Mott phases ex-
tend to larger values of α and significantly change their
shape. A qualitative change is observed when the exponent
approaches s = 1. First of all, the Mott phases appear to
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Fig. 4. Impurity occupation nimp as a function of ε0 for tem-
perature T = 0, s = 0.4, U = 0.5, and various values of α. The
sharp steps for the decoupled impurity α = 0 are rounded for
any finite α. Symbols (dashed lines) correspond to data points
within the Mott (BEC) phases.
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Fig. 5. Zero-temperature phase diagram of the bosonic siAm
as in Figure 1, but now for different values of the bath expo-
nent s. For increasing value of s, the areas occupied by the
Mott phases significantly change their shape and for s = 1 it
appears that each Mott phase extends up to arbitrarily large
values of α.

extend up to arbitrarily large values of α. Furthermore,
the BEC phase which separates the Mott phases for s < 1
and α > 0 is completely absent for s = 1! We do not yet
have an explanation for this observation and it would be
interesting to find out whether the absence of the BEC
phase is due to the special form of ∆(ω), equation (3), or
whether it is a generic feature even when ∆(ω) ∝ ω is only
valid for ω → 0.

In contrast, the Mott phase vanishes in the limit s → 0:
an extrapolation of the phase boundaries for values of s
in the range 0.01 < s < 0.1 clearly shows a powerlaw
dependence: αc(s) ∝ sβ, with β ≈ 0.485 ± 0.015.
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4 Summary

To summarize, we have presented NRG calculations for
the phase diagram and the impurity occupation of a
bosonic version of the single-impurity Anderson model.
The phase diagram contains Mott phases, in which the
local Coulomb repulsion prevents Bose-Einstein conden-
sation, separated by the BEC phase by lines of quantum
critical points. The BEC phase corresponds to a macro-
scopic occupation of a localized state around the impurity
and it would be very interesting to study how this (ar-
tificial) property of the model changes when interactions
between the bosons in the bath are taken into account, for
example within a mean-field calculation.

In future, we are planning to calculate, for example,
physical properties at finite temperatures and dynamic
quantities (impurity spectral function and self-energy).
The latter will be of importance for a possible DMFT for
the Bose-Hubbard model, an approach which has not yet
been fully developed. One important issue in this context
is the proper scaling of the Hamiltonian parameters in the
limit of infinite spatial dimensions [16]. For example, the
model on a hypercubic lattice as studied in reference [17]
requires a scaling of the hopping matrix elements as 1/d
which leads to a static mean-field theory. Another issue
is that the bosonic DMFT in the superfluid phase of the
Bose-Hubbard model might generate a more complex im-
purity model, the bosonic siAm introduced here would
then be applicable only within the Mott phases of the lat-
tice model.

Finally, it would be interesting to identify situations
for atomic quantum dots in optical lattices which can be
described by the bosonic single-impurity Anderson model
or generalizations thereof.
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